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We investigate the model of “reversible ratchet” with interacting particles, presented by us earlier �F.
Slanina, EPL 84, 50009 �2008��. We further clarify the effect of efficiency enhancement due to interaction and
show that it is of energetic origin, rather than a consequence of reduced fluctuations. We also show complicated
structures emerging in the interaction and density dependence of the current and response function. The
fluctuation properties of the work and input energy indicate in detail the far-from-equilibrium nature of the
dynamics.
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I. INTRODUCTION

Molecular motors �1–10� are subject to intense study both
from biological and technological point of view. They are
paradigmatic examples of machines operating at nanometer
scale. In a cell, motor proteins powered by ATP hydrolysis
�11–14� help move molecules to places where they are
needed. Motors assist separation of chromosomes, copying
DNA into RNA and perform many more functions �15–17�.
Technological applications of the underlying mechanisms
flourish �18�, including e. g. Brownian pumps �19,20� and
quantum tunneling ratchets �21�. They provide also an in-
valuable testing ground for fundamental questions of trans-
port phenomena far from equilibrium �22�.

Many models of molecular motors appeared in the litera-
ture since the pioneering work by Ajdari and Prost �23�. The
basic mechanism is best elucidated in the models which rely
on the ratchet mechanism �4,5,24–26� and also bear the
name Brownian motors. The basic idea can be viewed either
as diffusive motion of a particle in spatially asymmetric
time-dependent potential or as chemically driven transitions
between a finite number of mechanochemical states. The
former view is more intuitive, but the latter is closer to real-
ity and opens the perspective of fitting the underlying tran-
sition probabilities to experimental data.

More realistic models are rather built on Markov chains in
the configuration space constructed as product of spatial and
internal �chemical� coordinates �8,27–35�. This approach re-
sides perhaps on more solid experimental evidence, but the
absence of explicit potential makes it very difficult to assess
the energetic efficiency, the question of principal importance
in this paper.

Indeed, one of the points of special interest here will be
the question of the efficiency of molecular motors. Several
measures of efficiency can be found in literature. We shall
use the classical thermodynamic definition �=W /Ein, where
W is work performed and Ein energy supplied to the system
from external source. Alternative measure takes into account
viscous resistance �36�, thus reflecting better the reality, at
the cost that the inequality ��1 is not guaranteed automati-
cally. Yet other methods of measuring the efficiency involve

explicitly the consumption of chemical energy �37�, or the
magnitude of the stopping force �9�. Note, however, that the
former work �37� explores the interacting motors and the
mechanism if generating the nonzero current is related to
spontaneous symmetry breaking and this it is principally dif-
ferent from the noninteracting case studied in �9�. Therefore,
the direct comparison of the efficiency in these two cases is
hardly possible. We are not aware of any work in which
several measures of efficiency would be systematically com-
pared on the same model.

The efficiency of canonical Brownian motors realized as
either flashing or rocking ratchets was intensely studied
�27–29,38–43�. It turns out that the energetic efficiency is
rather low �5,41�, while the experimental data on motor pro-
teins, e. g. the kinesin �9,11�, report high efficiency, some-
times even estimated to be close to 100 per cent. We are not
in a position to judge the quantitative precision of these em-
pirical estimates, although it can be suspected that the error
margin is rather high. However, one is lead to a natural con-
clusion that the usual ratchet mechanism with diffusion as
principal driving force is not an appropriate model for bio-
logical motors.

In idealized case we can distinguish between ratchet and
power-stroke mechanisms for molecular motors �44�, the lat-
ter relying rather on quasideterministic downhill motion in a
free-energy landscape which evolves in time. Thus, the par-
ticles move as if trapped in a traveling potential wave. This
idea was elaborated in a toy model of “reversible ratchet”
�43,45,46�, showing much higher efficiency, close to the bio-
logically relevant figures. Of course, arbitrary combinations
and mixtures of the ratchet and power-stroke mechanisms
can be invented and indeed, they are believed to be found in
reality, e.g., in the myosin V motor �see the review �35� and
references therein�. Nevertheless, it is useful to compare
these two extremes. We should also note that high efficiency
was characteristic of the models of either interacting �37� or
noninteracting �47,48� motors, which do combine the ratchet
and power-stroke mechanisms.

The second point we shall concentrate on in this work will
be the mutual repulsive interaction of molecular motors. In
the cell, the steric �hard-core� repulsion of motor proteins
influences significantly their behavior. For example, in gene
transcription and translation large number of motor proteins
move along the same track �15,16�, forming the so-called
“Christmas tree” structures. Thus, they show themselves as a*slanina@fzu.cz
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physical realization of the well-studied asymmetric exclusion
process, introduced first in the context of biopolymerization
�49,50� and later solved exactly in great detail, using sophis-
ticated techniques �22,51–53�. The model was adapted for
molecular motors, which may attach and detach with defined
rates �54,55�. Later, this situation was studied theoretically
for the cases of kinesin �56�, ribosomes �57�, and RNA poly-
merase �58�, using the procedures developed in traffic mod-
els �59�. The influence of the geometry of the compartment
in which the interacting motors diffuse after detachment
from the track was studied, e.g., in �60�.

Interaction of motors brings about even more complicated
collective effects. In the cell, kinesin and dynein molecules
typically carry the cargo in groups �8,9,61�, resulting in cur-
rent reversals. Including explicitly the ratchet mechanism of
driven diffusion of hard-rod particles leads to very intricate
effects �62–64�, if the particle size and the ratchet periodicity
are incommensurate. The collective movement of coupled
Brownian motors was studied �65–68� and in some cases the
coupling was found to induce nonzero current and spontane-
ous oscillations even in mirror symmetric potential due to
dynamical symmetry breaking �37,69�. In analogy with these
works, the motion of a few rigidly bound motors was studied
�70�. A special case of such interaction is the coordination of
the two motor heads within single kinesin molecule, which
leads also to nontrivial effects �34�. Finally, let us mention
the interaction of the motors with the track, studied in
“burnt-bridge” models, e.g., in Ref. �71�.

In our previous paper �72� we presented a model, which is
a modified version of the “reversible ratchet.” Spatial coor-
dinate is discretized, as e. g. in �26�. Tunable on-site repul-
sion between particles is introduced. We found in �72� that
not too strong interaction leads to increase in efficiency. This
effect was reproduced qualitatively in analytical calculations
based on mean-field �MF� approximation. Quantitative
agreement was reached in an improved MF treatment, devel-
oped in �73�. Here we investigate the model in depth by
further numerical simulations. Especially, we elucidate the
origins of the interaction-enhanced efficiency. We shall show
that it stems from the energy balance rather than from sup-
pression of fluctuations. At stronger interaction and/or higher
density, current reversals and oscillations in response func-
tion are found. We also calculate the distribution of input
energy and performed work, which is far from being Gauss-
ian.

II. REVERSIBLE RATCHET WITH INTERACTING
PARTICLES

Our model contains N particles occupying integer posi-
tions on a segment of length L, with periodic boundary con-
ditions, and evolves in discrete time. The position of i-th
particle at the instant � is denoted xi���. The particles move
under the influence of a variable driving force with spatial
period 3 and temporal period 4t. The potential of this force is
V�x ,��=V�x ,�+4t��Vx mod 3���, at site x and time �. The
three independent values of the potential Va���, a=0,1 ,2
evolve in a four-stroke pattern, with V0���=0 and the remain-
ing two being delayed one with respect to the other by one
quarter period t. Thus, we prescribe

V1��� = V2�� + t� = �
V for 0 � � � t

V + 2V�1 − �/t� for t � � � 2t

− V for 2t � � � 3t

− V − 2V�1 − �/t� for 3t � � � 4t .
� .

�1�

We easily recognize the traveling-wave character of this po-
tential, corresponding to the power-stroke mechanism of the
molecular-motor movement. In all the rest of this paper, we
fix the amplitude of the potential V=1. The time dependence
of the potential is illustrated in Fig. 1.

Besides the driving potential, there is also a uniform ex-
ternal force from the useful load F and, most importantly, the
repulsive interaction from other particles. We suppose the
interaction is on site only and we tune its strength, in order to
interpolate between the noninteracting and hard-core cases.
The jth particle feels the potential from all remaining ones.

To formalize it, we denote nj�x ,��=�i=1
N �̄�i− j���x−xi���� the

number of particles, except jth particle, at site x. �We use

��a−b� for Kronecker delta and �̄�a−b�=1−��a−b�.� Thus,
the j-th particle moves in the potential

Uj�x,�� = V�x,�� + xF +
g

1 − g
nj�x,�� . �2�

For g=0 we recover the noninteracting case, while when
g→1 we approach the hard-core interaction of the exclusion
process �22�. In contrast with the previous work �72�, we use
here different form of the interaction in order to see the limit
of hard-core repulsion when g→1. Although it may cause
some small difficulties when comparing the results of �72�
with the present ones, the advantage lies in the possibility to
see the transition from noninteracting case to hard-core re-
pulsion on a finite interval g� �0,1�.

The simulation algorithm proceeds as follows. At each
integer time � we instantly shift the potential according to
Eq. �1�. Then, we choose N times a particle randomly and let
it try to make a jump. Therefore, on average every particle
makes one attempt per one time unit, but the probability that
a given particle performs actually k attempts approaches
Poisson distribution with unit mean, P�k�=1 / �ek!�, when N
is large. For small N there is a deviation from the Poisson
distribution, which induces slight finite-size effects, but in
�72� we showed that they can be neglected for N larger than
about 100. Note that in each of these N attempts the external
potential V�x ,�� is the same, but the potential Uj�x ,�� felt by

FIG. 1. �Color online� Graph of the time dependence of the
potential in which the particles move. Full line: V1���, dashed line:
V2���. The potential at the third site, V0, is time independent.
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the particle j may change, because the configuration of par-
ticles nj�x ,�� changes after each particle jump.

In one attempt, the particle is allowed to jump one site to
the right or left. The probability of the jump x→y of the jth
particle is

Wj,x→y =
1

2
�1 + e��Uj�y,��−Uj�x,����−1 �3�

if 	x−y	=1 and zero if 	x−y	�1. For convenience, we define
the temperature T so that �=270 /T.

Let us now specify the main measurables. The simplest
quantity of interest is the current

J��� = �
i

�xi�� + 1� − xi���� �4�

or rather its time average per particle J
=lim�→���N�−1���=1

� J����. As we are interested in the ener-
getics of the motor, we must define the energy input and the
useful work done by the particle. The latter quantity, at time
�, is simply w���=FJ���. The energy pumped into the motor
from outside relates to the change of the potential Va���
while the particles stay immobile. Thus, the energy absorbed
by the particle i between steps �−1 and � is

ai��� = V�xi���,�� − V�xi���,� − 1� �5�

and the efficiency, accordingly,

� = lim
�→�

���=1
� w����

���=1
� �iai����

. �6�

Later in this paper we shall investigate the distribution of the
particle shift

P�	x� =
1

N�
�

�
i

��xi�� + 	�� − xi��� − 	x� �7�

and also the joint distribution with the input energy

P�Ein,	x� =
1

N�
�

�
i

�
 �
��=�+1

�+	�

ai���� − Ein���xi�� + 	��

− xi��� − 	x� �8�

where N is the appropriate normalization. Note that in both
distributions there is implicit dependence on the time lag 	�.

III. ENHANCED EFFICIENCY

We show in Fig. 2 examples of typical evolutions of the
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FIG. 2. �Color online� Spatiotemporal diagrams of the configurations of the motor particles. The width of the sample is L=18, tempera-
ture T=10, quarter period t=4, external load F=0. Each panel corresponds to different combination of two parameters, the number of
particles N and the interaction strength g, whose values are indicated at corresponding columns and rows. Dots denote presence of exactly
one particle at given space and time, the other symbols presence of more particles, namely two ���, three ���, four ���, five ���, and six
���. The diagonal straight lines are guides for the eyes, indicating the movement of the minima of the potential V�x ,��.
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particle configurations, for three densities �
=1 /2, 
=2 /3,
and 
=1� and three interaction strengths �g=0, g=0.5, and
g=0.9�. We can see that without interaction, particles are
bunched together and dragged by the traveling wave of the
periodic potential. Interaction smears out this picture, sup-
presses the current and makes at the same time the local
particle density more uniform.

The typical dependence of the current and efficiency on
the interaction strength is shown in Fig. 3. At zero tempera-
ture, the dependence contains many steep steps with multiple
maxima and minima. Therefore, for some values of the ex-
ternal load F the current changes sign several times when the
interaction increases. For larger temperatures there are still
visible traces of this complex dependence, although the sin-
gularities �sharp steps� are smeared out. We also observe that
both the current and efficiency approaches zero for very
strong repulsion �g→1�. We shall see later that this feature is
special to some values of the particle density 
=N /L, for
example to 
=1, which applies to Fig. 3. The generic feature
is that for interaction above about g�0.6 the current and
efficiency approach a constant value.

The most important finding, from the point of view of
practical use of the motors, is the increase in the efficiency
when the interaction is switched on but is not too strong. For
zero temperature we observe multiple maxima of the effi-
ciency, which transform into a unique maximum at higher
temperatures. The effect of efficiency enhancement was in-
vestigated in detail in our previous work �72�. In this paper
we return to the origin of this effect later, when we shall
discuss the energy balance and work fluctuations.

In Fig. 4 we can see three sets of results for the current,
differing in the density of particles. Different curves in one
set correspond to different external load F. Al three cases
�and also the data shown in Fig. 3� exhibit minimum current,
i. e. smallest effective driving, at interactions somewhere
around g�0.4 to g�0.5. In order to see what is special in
this value of the interaction, we should note that the change
of the potential due to presence of a single particle
g / �1−g� is equal to the amplitude of the traveling-wave po-
tential V=1 just for g=0.5. At this value of the interaction,
one particle may block, or at least significantly hinder, the
movement of the remaining particles.

We can see that for low density, 
�0.5, the asymptotic
current for strongly interacting particles, g→1, is positive at
low load and at the same time is sensitive to the value of the
load. On the other hand, for 0.5�
�1 the asymptotic cur-

rent at zero load is negative, i.e., the interaction induces cur-
rent reversal. Contrary to the previous case, the asymptotic
current seems to be extremely weakly dependent on the load.
The third panel shows again that the asymptotic current is
zero for unit density, independently of the load.

Complementary information can be read from Fig. 5,
showing the dependence of the current on the load. We can
observe, how the current decreases with the interaction in the
full range of observed F. As a consequence, also the stopping
force, i. e. the value of F for which J=0, decreases with
increasing interaction. It is also interesting to note the non-
linear decrease in the current with the load. So, the response
function, defined as the derivative dJ /dF, depends on F.

In Fig. 6 we can see how the zero-load response function

�F=0 = − lim
F→0

dJ

dF
�9�

depends on the density, in the regime of very strong but finite
repulsion �g=0.9�. Globally, the response is stronger at
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FIG. 3. �Color online� Current �panel �a�� and efficiency �panel
�b�� as a function of interaction strength, for N=L=1200, t=16, and
F=0.1. The temperature is T=0 �solid line�, T=10 �dashed line�,
and T=30 �dotted line�.
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FIG. 4. �Color online� Current as a function of interaction
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FIG. 5. �Color online� Dependence of the current on the load,
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higher temperature, which is due to the fact that at low tem-
perature the movement of the particles is determined to
larger extent by the traveling wave, with lesser influence of
the external load, provided the load is small. An interesting
feature is the structure of the peaks and the minima seen in
Fig. 6 at all temperatures. At integer values of the density the
response approaches zero. The other minima are not so deep
and are located at densities slightly above the values 

=1 /2, 
=3 /2 etc. Interestingly, the maxima are found at
densities very close to the fractions 
=1 /3, 
=2 /3, 
=4 /3,
and 
=5 /3.

As we already said, the response depends on the load, so
we must distinguish from �F=0 at least one more response
function, defined at zero current

�J=0 = − 
lim
J→0

dF

dJ
�−1

. �10�

We can compare these two quantities in Fig. 7. The differ-
ence between �F=0 and �J=0 is especially marked for low
interaction strength, while at about g�0.3 they come close
to each other and at g�0.5 the two become nearly indistin-
guishable. The source of this behavior can be understood
looking at Fig. 5. Without interaction, the dependence of the
current on the external load is markedly nonlinear, so that the
derivative at F=0 and J=0 differ. Increasing the interaction,
the nonlinearity weakens and at g�0.5 we observe nearly
linear dependence, resulting in nearly equal values of the
derivative at F=0 and J=0. Note that the density is 
=1 in
Fig. 7 and both response functions approach zero when g

→1, in accordance with the results shown in Fig. 6.
It is interesting that the dependence on g exhibits several

peaks. The last �and highest� one is located close to g=1 /2
and has nearly the same shape both in �F=0 and �J=0. How-
ever, at lower g the peaks in the two response functions are
much different. We already mentioned that the interaction
g=1 /2 is special, as the change in potential due to presence
of a single particle just equals the amplitude of the periodic
potential V�x�. Also the second highest peak in �F=0 seems to
be located at a special value of the interaction strength,
namely close to g=1 /3. We can also see a small peak close
to g=1 /4. We believe these special values are due to special
blocking configurations of particles, which enhance the sen-
sitivity of the system to the presence of the external load.
Indeed, g=1 /3 means that two particles on the same site
contribute as much as the amplitude of V�x�, at g=1 /4 the
same holds for three particles at a site.

To avoid confusion, we do not claim that the configura-
tions of one, two, three, etc. particles are more �or less� fre-
quent at certain values of g. What we claim is the following.
These configurations happen time to time. When they do
happen, and if g has special values, they cause large sensi-
tivity to the value of the load. For other values of g, the
sensitivity to the load is weaker, whatever configuration of
particles occurs.

We also looked at the density dependence of the current at
high density and strong interaction. The results are summa-
rized in Fig. 8. For the strongest interaction investigated,
g=0.9, the curve J�
� has a very peculiar zig-zag shape, with
zeros at 
=m /2, maxima at 
=m+1 /3, and minima at

=m−1 /3, for positive integer m. When the interaction is
weakened, the sharp cusps become mild waves, until the
structure of maxima and minima vanishes at about g=0.5.
For smaller g, the current is a monotonously decreasing
function of density.

Note that the motor with hard-core repulsion undergoes a
current reversal at a density within the interval 
� �0,1�.
This is in sharp contrast with the asymmetric exclusion pro-
cess, where the current is proportional to 
�1−
�. The reason
for this difference lies in rather different way the particles are
driven. In the asymmetric exclusion process, there is con-
stant and homogeneous drift, only hindered by the exclusion
principle. In our model, the driving originates from the time
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FIG. 6. �Color online� Dependence of the response at zero load
on particle density, for N=1200, t=16, g=0.9, and the temperature
T=30 �solid line�, T=10 �dotted line�, and T=0 �dashed line�.
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dependence of the potential, therefore, it is also space and
time dependent. The orientation of the current depends on
precise timing of the potential changes at different places.
The interaction changes the potential a particle feels and the
current is susceptible to the details of the potential, so there
is no guarantee that the orientation of the current will be the
same with interaction as it was without interaction. Indeed,
the current reversal phenomenon demonstrates that the ori-
entation of the current does change due to the interaction.
Note also that the current reversal was observed �qualita-
tively correctly� also in the approximate mean-field calcula-
tion �73�.

Some insight into the current reversal phenomenon can be
gained from the statistics of forward and backward steps at
different places and different times within the period. We
define the measured weight P�	x= �1;x� ,��� as the average
number of particles which jump forward �“+” sign� and
backward �“−” sign� from site x at time �, where
x�=x mod 3 and ��=� mod�4t�. Note that it is not a probabil-
ity, because it is not normalized to unity. We can see a typical
example in Fig. 9. We can see that without interaction the
particles alternately prefer to jump forward from sites x�=0,
1, and 2. The backward jumps are rare. This behavior is
independent of the particle density by definition. If we add
strong repulsion, g=0.9, the picture differs substantially in
the low- and high-density regimes. For 
=1 /3 the statistics
of forward jumps differs little from the noninteracting case,

and the frequency of backward jumps is increased but re-
mains low. At half filling, 
=1 /2, the particles jump alter-
nately forward and backward, at different times, so that the
total effect is zero current, as seen already in Fig. 8. When
the density is further increased to 
=2 /3, the statistics is
nearly a mirror image of the case 
=1 /3. The particles pref-
erably jump backward at specific places and times, and the
forward jumps are rare. For comparison, we show in the last
panel of Fig. 9 how the statistics is influenced by nonzero
external load. The time dependence looks similar, but weight
of forward jumps is suppressed and the weight of backward
ones is enhanced.

As the probability of the jumps reflects the local potential,
and therefore the local instantaneous configuration of par-
ticles, through the formula �3�, the statistics of the jumps
shown in Fig. 9 tells us, what is, on average, the local neigh-
borhood of a particle at positions x� and times ��. Change in
the shape of the jump statistics reflects the reorganization of
the local particle configurations due to repulsive interaction.
We can clearly see that the reorganization of the particles can
be so dramatic that the current changes sign.

For comparison, we show also the statistics of jumps in
the presence of nonzero external load. The suppression of
positive and enhancement of negative peaks is visible, as
expected.

Similar analysis can also make more clear the argument
stated before, that the peaks in the response function at spe-
cial values of g are related to the enhanced sensitivity of
certain configurations of particles to external load. For ex-
ample, for g=0.5 such sensitive situation occurs when a par-
ticle tries to hop to a site where there is already a single
particle. To support this view we plot a similar statistics as in
Fig. 9, but for the difference in the count for force F=0.01
and opposite F=−0.01, on condition that the site to which
the particle is moving, already contains exactly one other
particle. We can write that quantity as

	P�	x = � 1	nx�1 = 1� � P�	x = � 1	nx�1 = 1�	F=−0.01

− P�	x = � 1	nx�1 = 1�	F=0.01 �11�

where x is the original position of the particle, x�1 the
position after the move, nx�1 number of other particles at the

(e)

τ mod (4t)

±P
(∆

x
=

±1
)

6050403020100

1

0

(d)

0

−1

−2

(c)1

0

−1

(b)
2

1

0

(a)
2

1

0

FIG. 9. �Color online� The weight of forward �positive quanti-
ties� and minus weight of backward �negative quantities� steps per-
formed at instants ��=� mod�4t� within the period. The steps origi-
nate at points x�=x mod 3, where x�=0 corresponds to dotted line,
x�=1 to solid line, and x�=2 to dashed line. The five panels have
the following parameters, starting from the top. �a�: N=400, g=0,
F=0. �b�: N=400, g=0.9, F=0. �c�: N=600, g=0.9, and F=0. �d�:
N=800, g=0.9, and F=0. �e�: N=400, g=0.9, and F=0.3. All five:
L=1200, T=10, and t=16.
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FIG. 10. �Color online� Sensitivity of the weight of forward �a�
and backward �b� steps to the change in external load. In this sta-
tistics, steps originate at site x, where 0=x mod 3 and particles go
to the site already occupied by exactly one particle. Solid line cor-
responds to interaction g=0.5, dashed line g=0.4, dotted line g=0.
Other parameters are N=L=1200, T=10, and t=16. As for the ex-
ternal load F, see the definition of the plotted quantities in the main
text.
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site where the particle is about to move. We plot an example
of this statistics in Fig. 10. We compare the situation at in-
teraction g=0, g=0.4, and g=0.5. We can see that the case
g=0.5 is indeed special. The sensitivity to the external load
is larger. Moreover, the difference in statistics has the same
sign for almost all instants within the time period �positive
for forward moves, negative for backward ones�, while both
for g=0 and g=0.4 there are positive as well as negative
differences.

IV. WORK FLUCTUATIONS

To understand better the effect of enhanced efficiency due
to interaction, we shall look at the energy balance and fluc-
tuations. First, we compare the values of current, efficiency
and average input energy 
Ein� relative to their values at zero
interaction, denoted J0, �0, and 
Ein�0, respectively. More
precisely, we plot the typical interaction dependence of the

quantities J̃=J /J0−1, �̃=� /�0−1 and 
Ein�˜= 
Ein� / 
Ein�0−1
in Fig. 11. We can clearly see that the initial increase in
efficiency for small g is accompanied by nearly no change in
the current, while the input energy decreases. Therefore, the
enhanced efficiency is due to lower energy input, while the
output �the work� remains nearly unchanged. When the in-
teraction strength increases further, the current starts decreas-
ing as well and so does the work, which is proportional to J.
This effect finally outweighs the lower energy input and the
efficiency decreases again. This is the source of the maxi-
mum in the efficiency at moderate values of the interaction.

We can get a bit more detailed information if we split the
input energy into its positive and negative parts. Recall, that
according to definition �8� the input energy is
Ein=���=�+1

�+	� ai����. We separate the contributions from times
when ai���� is positive from those when it is negative. The
former correspond to the shift of the potential V�x ,�� up-
ward, that latter to its downward move. So,
Ein�=���=�+1

�+	�
�ai����
��ai�����, where 
�x� is the Heaviside

function. With this definition we have Ein=Ein+−Ein−.
We then define the contributions from positive and

negative potential moves to the quantity 
Ein�˜ as 
Ein�˜

+

= �
Ein+�− 
Ein+�0� / 
Ein�0 and 
Ein�˜

−= �
Ein−�0− 
Ein−�� / 
Ein�0
where, as above, the subscript 0 denotes the quantities com-

puted at g=0. Hence 
Ein�˜= 
Ein�˜

++ 
Ein�˜

−. We show the de-

pendence of 
Ein�˜

� again in Fig. 11. We can see that both

positive and negative parts contribute to the decrease in the
input energy. The contribution of the positive part is larger in
the most interesting region of moderate g, where the effi-
ciency grows with interaction, while for larger g the decrease
in the negative part becomes more important. This leads to
the following explanation of the effect of increased effi-
ciency.

At not too high temperature, the particles are chiefly
driven by the traveling wave of the periodic potential. This is
the power-stroke mechanism of the molecular motor. When
the interaction is switched on, but remains small, the par-
ticles move in an effective potential which differ little from
the original traveling wave. So, the current remains nearly
the same, as testified in Fig. 11, while the input energy is
lowered, as is also seen in Fig. 11. This lowering could be
understood as follows. On the other hand, the repulsion af-
fects the distribution of particles within the period of the
potential V�x�. The minima become shallower, therefore the
particles are less concentrated at them. But it is the minimum
of the potential which is shifted above in the time evolution
of the potential, so it is the particle at the minimum that
acquires the energy from the source of the driving. Less par-
ticles at the minimum equals less input of energy, more pre-
cisely lowering of the positive part of the input energy. Con-
versely, the particles pushed off the instantaneous minima of
the potential are found at the maxima of the potential. But
these particles suffer lowering of the time-dependent poten-
tial, i.e., returning the energy back to the external source,
therefore lowering also the negative part of the input energy.
These two effects, i. e. unchanged current and lowered en-
ergy input, are the explanation of the increased efficiency. Of
course, more subtle effects are also at work here. Especially,
also the negative part of the energy input contributes. More
importantly, if the interaction is strong enough, it changes the
potential the particles move in to such extent that the current
diminishes. At very small temperature, the current is sensi-
tive to tiny changes in the shape of the potential and small
changes in the interaction strength can cause big jumps in the
current. We have seen these jumps in Fig. 3.
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FIG. 11. �Color online� Current ���, efficiency ���, average
energy input ��� and its positive �+� and negative �� � parts, all
relative to the value at g=0. The other parameters are N=L=1200,
T=10, t=16, and F=0.1.
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FIG. 12. �Color online� Dependence of the average energy input
gained by one particle on the shift of the particle. The quarter period
is t=16 and the time lag 	�=100t �i.e., 25 periods�. The tempera-
ture is T=10 �� and �� and T=30 �� and ��. The interaction is
g=0 �� and �� and g=0.1 �� and ��. The remaining parameters
are N=L=1200, F=0.1. The horizontal axis is normalized by the
number of time periods, which is 	� /4t; therefore, it expresses the
shift per period.
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In addition to the averages, we measured also the full
joint distribution function of particle shift and input energy
�8�. Because the work performed by one particle is propor-
tional to its shift, we have in fact the joint distribution of
performed work and input energy. As a first piece of infor-
mation we plot in Fig. 12 the average energy input at fixed
value of the particle shift, during the time interval 	�. We
can observe the already discussed fact that interaction de-
creases the energy input. Here we can see that it holds also
for most values of the shift, i.e., work performed by one
single particle, separately.

The probability distribution of the energy input at fixed
shift is shown in Fig. 13. We can see that the shape is pretty
close to a Gaussian. This is far from being true for the dis-
tribution of the shift, which is proportional to the work per-
formed by a single particle, as shown in Fig. 14. The distri-
bution is skewed; when we compare the shifts shorter and
longer than the most probable value, we find that the shorter
are significantly more probable than the longer ones. This is
due to the far-from-equilibrium character of the process. We

can also see that the distribution is composed of two separate
branches. The first one, with higher probability, corresponds
to shifts which are multiples of 3, the period of the potential.
The other shifts have significantly lower probability. In fact,
it comes as no big surprise, that after integer number of time
periods the particles like to be shifted by integer number of
spatial periods.

The most important finding, however, stems from the
comparison of the distribution in the case with and without
interaction. In Fig. 14 we make this comparison for such set
of parameters where we know that the interacting case ex-
hibits higher efficiency. By analogy with equilibrium statis-
tical physics one might be tempted to guess that higher effi-
ciency is accompanied, or even caused, by milder
fluctuations. The opposite holds in our model of the molecu-
lar motor. The fluctuations of the work performed by a single
particle are higher in the interacting case. Therefore, we con-
clude that the increase in efficiency is not accompanied by
decrease in fluctuations. On the contrary, the study of the
energy balance discussed above together with the fact of in-
creased fluctuations shows that the enhancement of effi-
ciency is purely an energy effect.

V. CONCLUSIONS

Interacting molecular motors moving in the power-stroke
regime were modeled using a “reversible ratchet” model.
Tunable on-site repulsive interaction leads to a host of intri-
cate phenomena. The most important of them is the increase
in energetic efficiency for small to moderate values of the
interaction strength. We traced the origin of this effect to
energy balance of the process. When the interaction is in-
creased from zero, the performed work remains practically
unchanged, while the input energy decreases. At the same
time, the fluctuations of the performed work increase. This
implies that the enhanced efficiency does not originate from
the suppression of fluctuations, contrary to the situation in
equilibrium heat machines.

Moreover, we observed that at very low temperature the
dependence of current as well as efficiency on the interaction
strength is rather complex, composed of many upward and
downward steps. Hence, the efficiency has several, rather
than single, local maxima as a function of interaction. As for
the current, for suitable values of the parameters we can
observe a sequence of current reversals when we increase the
interaction strength. This complicated behavior is due to the
interplay between size of steps in the external periodic po-
tential, in which a particle moves, and the size of additional
contributions to the potential from the interaction with other
particles. However, this complicated dependence gradually
disappears when the temperature increases. But the effect of
current reversal due to interaction remains still visible.

We also investigated the response function of the current
with respect to external load, both for zero load and for zero
current. We showed that these two response functions differ
substantially at zero or small interaction, but become identi-
cal when the interaction is large. We also revealed the struc-
ture with several peaks for both density and interaction de-
pendence of the response function. Detailed study of the
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FIG. 13. �Color online� Probability distribution of the input en-
ergy gained by a single particle at fixed value of the shift of this
particle, within the time lag 	�=400t �i.e., 100 periods�. The fixed
shift is 	x=282 ���, 	x=283 ���, and 	x=284 ���.The other
parameters are N=L=1200, T=10, t=16, g=0.1, and F=0.1. The
horizontal axis is normalized by the number of time periods, which
is 	� /4t, therefore it expresses the energy input per period.
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location of these maxima and minima showed that they cor-
respond to specific fractional values of density and interac-
tion. For example, the response is zero if the density is inte-
ger number and has maximum for densities equal to integer
number of thirds, except the values which are themselves
integers. In the interaction dependence, the peaks were found
close to interaction strength equal to one half, one third and
one fourth. We speculate that these special values are due to
the fact that in those cases just one, two, and three particles
on the same site, respectively, contribute to the potential by
the value exactly equal to the amplitude of the external pe-
riodic potential. Contrary to the complicated step structure in
the current, the peak structure in the response function sur-
vives also at higher temperatures.

The probability distribution of performed work and input
energy reveals that the interaction leads to the increase in
fluctuations, as we already mentioned. But we can see more.
First, the distribution of work is far from Gaussian. It is
skewed so that the lower particle shift �i.e., work performed
by an individual particle� relative to the maximum is more
probable. This is the sign of far-from-equilibrium regime of
the transport in the molecular motor. On the other hand, the
input energy is Gaussian distributed, when observed at fixed
work.

There is also a very interesting principal question related
to large-deviation properties of the fluctuation of the per-
formed work. We made some simulations in this direction,
which show that the work distribution, when properly res-
caled, converges to a large-deviation function. In the last
decade, there was a great surge of activity in the field of
Fluctuation Theorems �74–84� but in our case the problem of
applying these results lies in the choice of the proper quan-
tity which would be both physically meaningful �or at least

the physical meaning must not be enormously intricate� and
satisfy the fluctuation theorem in some of the forms known
so far. This question remains open.

Finally, we must also admit several drawbacks of our
model, which can be lifted only by setting up a completely
different scheme of particle movement. The first point is that
the potential changes synchronously at all sites. This is un-
realistic in biological motors, where each molecule has its
internal “clock” telling in what phase of the chemical cycle
the motor finds itself. It could be easily possible to simulate
an asynchronous version of the algorithm. On the other hand,
in technological applications the synchronicity in the poten-
tial changes may be built in into the system. The second
point concerns the tunable interaction used in our model.
Motor proteins interact always by steric hard-core repulsion
and th effective weak repulsion may occur only as projection
of real three-dimensional situation onto one-dimensional ef-
fective model �85,86�. However, there is no principal ob-
stacle to simulate three-dimensional case directly, if only suf-
ficient computer power is available. Another way out is to
generalize the asymmetric exclusion process in such a way
that the maximum number of particles one site may accom-
modate is not one, but two, or three, etc. Simulations in this
direction are under way.
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